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Abstract

Field or laboratory data collected for work-related musculoskeletal disorder (WMSD) risk 

assessment in construction often becomes unreliable as a large amount of data go missing due to 

technology-induced errors, instrument failures or sometimes at random. Missing data can 

adversely affect the assessment conclusions. This study proposes a method that applies Canonical 

Polyadic Decomposition (CPD) tensor decomposition to fuse multiple sparse risk-related datasets 

and fill in missing data by leveraging the correlation among multiple risk indicators within those 

datasets. Two knee WMSD risk-related datasets—3D knee rotation (kinematics) and 

electromyography (EMG) of five knee postural muscles—collected from previous studies were 

used for the validation and demonstration of the proposed method. The analysis results revealed 

that for a large portion of missing values (40%), the proposed method can generate a fused dataset 

that provides reliable risk assessment results highly consistent (70%–87%) with those obtained 

from the original experimental datasets. This signified the usefulness of the proposed method for 

use in WMSD risk assessment studies when data collection is affected by a significant amount of 

missing data, which will facilitate reliable assessment of WMSD risks among construction 

workers. In the future, findings of this study will be implemented to explore whether, and to what 

extent, the fused dataset outperforms the datasets with missing values by comparing consistencies 

of the risk assessment results obtained from these datasets for further investigation of the fusion 

performance.
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1. Introduction

Work-related musculoskeletal disorders (WMSDs) are one of the most common causes of 

days away from work and physical disabilities in the construction industry [1]. An increased 

exposure to risk factors in the workplace can enhance the likelihood of WMSDs; hence, 

proper identification of possible risk exposures and developing injury prevention strategies 

are essential to alleviate WMSDs.

Collecting risk exposure data with human subject involvement is most often accepted as the 

gold standard for understanding risky behaviors and conditions that may expose workers to 

WMSD risks on construction sites [2]. Generally, these data are collected in laboratory 

settings or real construction sites by technologies such as optical motion capture systems or 

surface electromyography sensors. However, data collected from these technologies often 

suffer from ‘drop out’, a phenomenon in which data is missing due to technology-induced 

errors (e.g., disconnection of sensors, errors in communicating with the database server, 

instrument failures), human-induced errors (e.g., accidental human omission) or other 

unknown reasons [3]. The result is incompleteness of the collected risk exposure data that 

may lead to invalid conclusions on the effects of the potential WMSD risk factors. Missing 

data is a common problem associated with data collection in ergonomic risk assessment 

using technologies, regardless of the quality of the research design [4]. Therefore, it should 

be carefully handled. In doing so, reserving the interrelation among the potential risk factors 

and the risk indicators across multiple datasets is necessary. Among several benefits of data 

fusion, one is revealing the latent pattern of the data and leveraging collaborative 

relationships among various factors within multiple datasets based on that pattern. This 

benefit can be utilized to reserve the interrelation among different factors and the risk 

indicators across the datasets to fill in the missing data. This study proposes a method for 

dealing with multiple imperfect and incomplete datasets by applying a Canonical Polyadic 

Decomposition (CPD) technique to treat the imperfect data for WMSD risk assessment. 

CPD decomposes the incomplete datasets based on the latent relationship among different 

risk factors and the risk indicators, then reconstructs a new dataset through fusion as a high-

order tensor [5]. This newly reconstructed dataset is referred to as fused dataset, which can 

then be used for assessing the risk of WMSDs. To validate the effectiveness of the CPD-

based method in assessing WMSDs, two WMSD risk-related datasets collected from prior 

experimental studies (original datasets) were intentionally modified to represent incomplete 

datasets. Then CPD was applied for fusion and to reconstruct the fused datasets. The risk 

assessment results obtained using the fused datasets were further compared to those obtained 

by using the original datasets to evaluate the performance of the fusion treatment.

2. Background

2.1. Importance of research

Missing data is a common problem in research studies that involve human subjects and 

technologies for data collection. They can reduce statistical power of a study and lead to 

erroneous conclusions [6]. To potentially mitigate this issue, the sample size for data 

collection is typically increased. However, this is not always possible due to research design, 

limitations in budget and human resources. It is not always feasible to regenerate the data by 
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repeating the experiment, as it can be costly and time-consuming. There are existing 

methods of handling missing data in literature such as simply omitting observations with the 

missing data [7], regression imputation [8], mean substitution [9], replacing the missing data 

with the last observed values [10], and estimating the missing data using conditional 

distribution of the other variables [11]. While useful, these methods may not be optimal for 

tackling data missing in WMSD risk assessment. Simply omitting observations with missing 

data typically decreases the sample size and may adversely affect the statistical power [7]. 

Regression imputation predicts a missing value from other variables, but it barely adds any 

new information except increasing the sample size and compromising the standard error [8]. 

If there is a great inequality in the proportion of missing values of different variables, mean 

substitution may lead to inconsistent biases and underestimation of errors [9]. Replacing 

missing data with the last observed values assumes that there will be no changes in the 

outcome [10]. Using conditional distribution of the other variables becomes inappropriate 

when a large amount of data is missing, as in this situation, the relationship among the 

variables needs to be properly computed [7,11].

Moreover, in real life scenarios, a phenomenon can be described and characterized with a set 

of factors. Each of these factors is referred to as the ‘dimension’ of that phenomenon [12]. 

When a research problem includes multiple dimensions, it is considered ‘multidimensional’. 

This is often the case in WMSD risk studies, in which risk exposure data can be collected in 

terms of different measurements, often referred to as risk indicators, and working conditions 

for the purpose of in-depth understanding of risks. The working conditions may include 

various work settings and postures, and the risk indicator measurements may include 

kinematics, kinetics and electromyography (EMG) measurements. Quite often, multiple risk 

indicators can provide a more detailed insight into the worker’s risk-inducing behavior, 

compared to what a single risk indicator can provide as these multiple risk indicators may be 

correlated. In WMSD risk studies that involves analyzing the effects of working conditions 

on risk indicators, the working conditions and the risk indicators can be termed as a 

‘dimension’ of the risk phenomenon. This type of data can be considered as high-

dimensional data. When data is missing in multiple high-dimensional risk-related datasets, 

the existing methods will not be suitable as the interrelation among different risk indicators 

and potential risk factors across multiple datasets may not be well captured. Fuzzy modeling 

has been used in multidimensional missing data imputation [13]. However, for high-

dimensional datasets where capturing the latent relationship among various dimensions is 

essential during imputation, the performance of Fuzzy algorithms degrades [14,15]. Besides, 

the performance of Fuzzy models in dealing with multiple datasets is yet to be tested. In 

contrast, data fusion can be an efficient method in this regard that integrates information 

based on the interrelation among the factors and risk indicators in such a way that it can 

produce a more complete representation of the measurements of the risk indicators, 

compared to that of an incomplete dataset [16].

2.2. State of research on data fusion in construction

In the construction industry, data fusion methods have been used for automated 

identification, location estimation, dislocation detection of construction materials in jobsites 

[17,18], automated progress tracking of construction projects [19], structural health 
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monitoring [20], and damage identification of civil structures [21]. In construction 

ergonomics, a computationally efficient approach using data fusion was developed to 

recognize construction workers’ awkward postures [22]. Fusion of data from continuous 

remote monitoring of construction workers’ location and physiological status was used to 

identify safe and unsafe behaviors of construction workers [23]. Fusion of spatio-temporal 

and workers’ thoracic posture data has been done for understanding the worker’s activity 

type for productivity assessment [24]. A position and posture data fusion method was 

proposed for evaluation of construction workers’ behavioral risks [25]. However, no study 

has been done that uses data fusion of incomplete risk-related datasets for assessing WMSD 

risks.

2.3. State of research on tensor decomposition for data fusion

To integrate multidimensional data, it is essential to learn the relationships between those 

dimensions to understand the multidimensional nature of a phenomenon [12]. There are 

currently several existing approaches for analyzing multiple datasets. Zheng et al. [26] 

summarized the methods of fusing multiple datasets into three categories. The first category 

is stage-based fusion methods, where different datasets are used at different stages of data 

mining tasks [27]. The second category is deep learning-based fusion methods that use a 

neural network to extract original features from multiple datasets and learn a new 

representation of those features for classification and prediction purposes [28]. The third 

category is semantic meaning-based fusion methods that identify the association between 

different features across multiple datasets and carry the semantic meaning, i.e., the latent 

relationship between the features during fusion [26]. Similarity-based data fusion is one type 

of the semantic meaning-based fusion methods, in which similarity between the features are 

measured from multiple datasets. These similarities can leverage the correlation among the 

features collectively and help obtain any missing information of a feature based on the 

information available for another feature. Based on the similarities, different datasets can be 

fused [26]. This study is interested in fusion of risk-related datasets containing different 

features that represent WMSD risk factors in construction and are inherently related to each 

other. Understanding the latent relationship between different features across multiple 

datasets plays a vital role in proper fusion. Also, learning the similarities between those 

features is useful to impute the missing values. As a result, the similarity-based data fusion 

methods lend themselves well to tackling the fusion problem in this study.

Tensor decomposition is one type of similarity-based data fusion methods [29]. Tensors are 

generalizations of matrices to higher dimensions, and are powerful to model 

multidimensional data [30]. Tensors are multidimensional arrays of numerical values that are 

widely used in different applications in data analysis and machine learning, including filling 

in missing values [31], anomaly detection [32], object profiling [33], discovering patterns 

[34], and predicting evolution [35]. Matrix factorization was previously used in filling out 

missing data [36]; however, it only works with two-dimensional data and may not be 

applicable to high-dimensional data like those used in WMSD risk studies. Tensor 

decomposition is a useful tool to deal with high-dimensional datasets. It accurately extracts 

the correlations among various dimensions from different datasets and learns the latent 
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structures and collaborative relationships among the dimensions to approximate the pattern 

of the data [37].

With increases in dimensions of the datasets, the number of the elements in a tensor also 

increases. This increase in elements makes the dataset difficult to deal with in terms of 

computational and memory requirements. By decomposing the high-dimensional data 

presented in form of a tensor, the problems associated with high-dimensionality can be 

alleviated or even removed [38]. Also, tensor decomposition can be used as an efficient tool 

for missing value prediction [39,40]. Though tensor decomposition has been abundantly 

applied in areas such as scientific computing, signal processing, and social media data 

analysis, its use in construction industry-related datasets is limited. One application of tensor 

decomposition with construction datasets was concerned with awkward posture recognition 

in which worker’s motion data was presented as high order tensor [22]. However, this 

technique has yet to be established as an alternative method of treating imperfect 

experimental data to provide meaningful and accurate risk assessment results in general 

WMSD risk assessment studies.

The two most widely used tensor decomposition algorithms are canonical polyadic 
decomposition (CPD) and Tucker decomposition (TD). CPD is generally advised for use 

with latent parameter estimation, while the TD is suggested in use of subspace estimation, 

compression, and dimensionality reduction [5]. As the objective of this study is to fuse two 

incomplete datasets based on the latent correlations among all dimensions of those datasets, 

CPD is more suitable than TD in fulfilling the purpose of this study. Moreover, CPD is very 

effective in capturing the interactions among various dimensions of a high-dimensional 

datasets and therefore, it can effectively be used for imputing missing data [31]. Considering 

many other tensor decomposition techniques are based on CPD and TD and CPD is more 

suitable for this study, the following subsection will only discuss CPD for tensor 

decomposition.

2.3.1. Canonical polyadic decomposition (CPD)—In order to impute missing data, 

CPD extrapolates the latent structures and collaborative relationships among different 

dimensions, such as rows and columns of a tensor. The CPD method factorizes a tensor into 

a sum of component rank-one tensors [37]. For example, in CPD, a given three-dimensional 

tensor Y ∈ ℝI×J×K can be written as:

Y ≈ ∑
r = 1

R
ar ∘ br ∘ cr ≡ 〚 A, B, C 〛 (1)

where R is a positive integer, which is referred to as the rank of a tensor. The rank of tensor 

Y = R can be defined as the smallest number of rank-1 tensor that is required to represent the 

tensor Y as their sum [5] (Fig. 1); Rank-1 tensor is defined as a decomposition of an N-

dimensional tensor into one outer product of N vectors. R is also called latent factor. I, J and 

K are the sizes of the dimensions of the tensor Y where, ar ∈ ℝI, br ∈ ℝJ and cr ∈ ℝK for r = 

1…R. ‘∘’ indicates the vector outer product. ar ∘ br ∘ cr ∈ℝI×J×K is an outer product of three 

vectors ar, br and cr and is referred to as a rank-1 tensor. A, B and C are the factor matrices 

obtained for each dimension after decomposition of the tensor Y, and are referred to as the 
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combination of the vectors from the rank-1 components. Here, the factors matrices A = [a1, 

a2, …, aR] ∈ℝI×R, B = [b1, b2, …, bR] ∈ℝJ×R and C = [c1, c2, …, cR] ∈ℝK×R. Their column 

vectors are expressed explicitly as: ar = [a1r, a2r, a3r, …, aIr]T, br = [b1r, b2r, b3r, …, bJr]T, cr 

= [c1r, c2r, c3r, …, cKr]T.

Elementwise, Eq. (1) can be expressed as:

Y ijk ≈ ∑
r = 1

R
airbjrckr for i = 1…I; j = 1…J; k = 1…K . (2)

CPD of a 3-dimensional tensor can be formalized as follows:

min
Y

Y − Y ; Where, Y = ∑
r = 1

R
ar ∘ br ∘ cr ≡ 〚 A, B, C 〛 (3)

where Y is the original tensor and Ŷ is a low rank approximation of tensor Y. CPD of a 

tensor is typically computed using the alternating least square (ALS) algorithm where each 

factor matrix is iteratively solved using a least square method. This algorithm fixes all factor 

matrices, except one, to optimize for the non-fixed matrix and then repeats this procedure for 

each matrix repeatedly until it converges [37,41].

The CPD of a three-dimensional tensor is illustrated in Fig. 1.

3. Problem statement and research objective

For assessing WMSD risks among construction workers, human-based data can potentially 

suffer from missing data points due to dropout from the data collection technology. 

However, an in-depth method in handling multiple imperfect datasets for assessing WMSD 

risks is missing in the existing literature. Tensor decomposition-based data fusion can be 

potentially useful in this regard. It may help understand the data distribution of each dataset 

and consider the correlation among risk indicators captured at multiple work settings or 

conditions to fill in the missing data points. Therefore, the objective of this research is to 

develop a method that applies CPD tensor decomposition techniques to fuse multiple 

imperfect datasets and replace missing data by considering the correlation among the risk 

indicators for assessing the WMSD risks among construction workers.

4. Proposed method

Fig. 2 provides a schematic overview of the proposed method. First, multiple risk-related 

incomplete datasets captured in multiple experimental settings are represented as high-

dimensional tensors. Then these tensors are fused by applying the CPD tensor 

decomposition. The CPD first decomposes these tensors into factor matrices that represent 

the latent structures and collaborative relationships among all dimensions. Based on the 

correlation among different dimensions, the CPD then reconstructs a new dataset with all 

missing values filled. This fused new dataset is ready to be used for subsequent risk 
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assessments. In the following subsections, the steps of the proposed method are described in 

detail.

4.1. Incomplete datasets for WMSD risk assessment

For WMSD risk assessment in construction, the effects of various work-related factors on 

specific risk indicators are often measured. Therefore, a typical WMSD risk-related dataset 

contains information such as work settings/experimental conditions and specific risk 

indicators. Often, a WMSD risk may not be characterized with a single type of risk indicator 

and in that case, multiple types of WMSD risk indicators are measured, e.g., kinematics 

(flexion, abduction/adduction, internal/external rotation), muscle activity data recorded by 

EMG, and kinetic data recorded by force plates, and can be available in multiple datasets.

To describe the proposed method, consider two datasets DS1 and DS2 (denoted for 

Incomplete Dataset 1 and Incomplete Dataset 2 in Fig. 2). Each dataset contains two 

different types of WMSD risk indicators collected from several subjects, investigating 

various work-induced risks for a number of work settings (e.g., working technique, working 

posture, working condition). This is common practice of WMSD risk assessment studies in 

construction, where different types of risk indicators are often measured from the same 

group of people and the same work settings for an in-depth understanding of a specific type 

of risk. In this case, a data value in DS1 or DS2 represents a value of a risk indicator 

measured from a subject at certain work settings. For example, to measure the knee WMSD 

risk, two common types of risk indicators are measured – awkward knee rotations and 

maximum EMG of knee postural muscles. Awkward knee rotations may include flexion, 

abduction/adduction, and internal/external rotations. Maximum EMG of knee postural 

muscles may include measurements of maximum flexor and extensor muscle activations. 

The datasets can be represented in a tabular form as shown in Table 1.

In Table 1, each dataset contains a type of risk indicator measurements collected for several 

subjects at a number of work settings. The column subject contains subjects’ IDs. The 

columns setting1, setting2, …, settingq contain arrangements of q work settings at which 

measurements of m risk indicators in columns ind1
1, ind1

2, …, ind1
m are collected in DS1, 

and n risk indicators are collected in columns ind2
1, ind2

2, …, ind2
n in DS2. For example, 

the column setting1 can represent working postures that have two arrangements – static and 

dynamic. The column setting2 can represent slopes of the working site that have three 

arrangements – 0°, 15° and 30°. So, in the column setting1, the values are either ‘static’ or 

‘dynamic’ and in the column setting2 the values are either ‘0°’, ‘15°’ or ‘30°’. If a study 

involves only these two settings, then the value of q will be 2. Similarly, the columns ind1
1, 

ind1
2, …, ind1

m can contain kinematics measures (flexion, abduction/adduction, internal/

external rotation) and ind2
1, ind2

2, …, ind2
n can contain EMG measures of several muscles. 

To be more specific with an example, in DS1, a value of any of the m risk indicator columns 

can be a certain measurement value of a risk indicator (e.g., flexion) captured for certain 

subject at certain arrangements of q work settings. Note that in both datasets, the values of 

columns of subject and setting1, setting2 …, settingq are identical; the only difference is the 

measurements of the risk indicators. These datasets become incomplete when a significant 

amount of risk indicator measurements are not captured during data collection process.
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4.2. Tensor construction

Since the datasets contain multiple risk indicator measurements for the same combination of 

subjects and settings, the risk indicator measurements from both datasets are concatenated, 

yielding a new dataset (DS3) as illustrated in Table 2. This process is called early integration 

data fusion [36].

In Table 2, each risk indicator measurement in DS3 is collected for certain subject at 

different arrangements of q work settings. Thus, ‘subject’ and each ‘work setting’ are 

considered as dimensions of each risk indicator, resulting in a total of (1 + q) dimensions. 

For multiple risk indicators, this method allows datasets to be represented as a ‘multi-

dimensional’ or ‘multi-modal’ tensor, where each cell of the tensor contains a value of a 

certain risk indicator, measured for a subject at certain arrangements of q work settings. In 

this study, the ‘subject’, each ‘work setting’, and the entire set of ‘risk indicators’ can be 

considered as dimensions of the tensor which has a total of (1 + q + 1) dimensions.

To illustrate this tensor representation with a simplified example, consider only one work 

setting (e.g., working postures) denoted by ‘setting’. In this case, DS3 can be represented as 

a three-dimensional tensor (subject × risk indicators × setting) (Mi, j, k) ∈ ℝs×r×t (Fig. 3), 

where i, j and k correspond to dimensions ‘subject’, ‘risk indicators’ and ‘setting’ 

respectively; and s, r and t are their sizes where i∈{1,2, …s}, j∈{1,2, …r} and k∈{1,2, …t}. 

Each slice along the setting axis in Fig. 3 represents a matrix (Mi, j) ∈ ℝs×r given a setting 

arrangement k.

4.3. Tensor decomposition

Following tensor construction, CPD is applied to decompose the tensor into factor matrices. 

As mentioned earlier, CPD learns the latent structures and collaborative relationships among 

the dimensions of a tensor. Thus, each factor matrix represents the latent relationships 

between the corresponding dimension and all the other dimensions captured by latent factor 

R (previously discussed in Section 2.3.1). Before applying CPD, the latent factor R should 

be computed properly to ensure unique mapping of the original tensor to the decomposed 

tensor in the form of factor matrices. In the above example, (Mi, j, k) ∈ ℝs×r×t is associated 

with three dimensions – ‘subject’, ‘risk indicators’ and ‘setting’; hence, three factor matrices 

are obtained after decomposition, denoted as FM1 ∈ ℝs×R, FM2 ∈ ℝr×R, FM3 ∈ ℝt×R, as 

shown in Fig. 4. Here, the factor matrix FM1 obtained for the dimension ‘subject’ represents 

the latent relationships between the subject and the risk indictors collected at different 

arrangements of the setting. FM2 is obtained for the dimension ‘risk indicators’ and 

represents the latent relationships between the risk indicators and the subjects at different 

arrangements of the setting for which those risk indicators were collected. FM3 is obtained 

for the dimension ‘setting’ and represents the latent relationships between different 

arrangements of the setting and the risk indicators collected for the subjects at those 

arrangements of the setting. CPD leverages all the inter-dimensional correlations among all 

the dimensions of a tensor and performs data fusion based on those correlations to create a 

reconstructed tensor. The structures of the factor matrices and the method of computing R 
will be discussed further in “Implementation and results”.
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4.4. Tensor reconstruction

After tensor decomposition, the resulting factor matrices are used to reconstruct a new fused 

tensor where the missing values are filled and values of the WMSD risk indicators are fused 

based on the inter-dimensional correlations. In the prior example, such tensor can be denoted 

as M′i, j, k ∈ ℝs × r × t, which is computed using the following equation:

M′i, j, k = ∑
r = 1

R
FM1r ∘ FM2r ∘ FM3r (4)

where FM1r, FM2r, FM3r are the column vectors of FM1, FM2 and FM3 respectively, R is 

the latent factor and ‘∘’ is the vector outer product. Using the newly reconstructed tensor, 

values of the WMSD risk indicators for different subjects at different settings are extracted 

and reorganized into a tabular form, readily available for risk assessment.

5. Implementation and results

5.1. Original datasets collected from previous experiments

The current study considered two risk-related datasets that were collected from the authors’ 

prior human subject laboratory experimental studies. These studies assessed work-related 

factors for knee WMSDs among residential construction roofers who work on sloped 

environments. One dataset contains calculated knee rotation (kinematics) data, representing 

five knee rotational angles – flexion, abduction, adduction, internal and external rotation 

[42]. The second data set contains EMG data, describing muscle activation of five knee 

postural muscles – biceps femoris, recus femoris, semitendinosus, vastus lateralis and vastus 

medialis [43]. Awkward knee rotations and maximum muscle activation have been identified 

as two quantitative risk indicators of WMSDs in low extremities [44,45]. The five knee 

rotation angles represent the WMSD risk associated with awkward and extreme kneeling 

postures, while the EMG data represent the WMSD risk associated with heightened 

activation of knee postural muscles that might cause knee joint overloading. Both types of 

data were collected from the experimental study in which 9 subjects simulated the shingle 

installation roofing task at three roof slopes (0°, 15° and 30°) with two kneeling postures 

(static and dynamic). Each participant performed the task for five trials. Although the 

experiment was designed and implemented carefully, both datasets initially collected from 

the experiment had missing values. About 2% data were missing in the knee rotation dataset 

and about 20% data were missing in the EMG dataset at random. In this study, observations 

with missing data were intentionally removed from the initial datasets for the sake of 

obtaining complete datasets for evaluation. In the knee rotation dataset, each data point 

represents the maximum angle value of a knee rotation for a certain subject at a specific 

slope, posture and trial. In the EMG dataset, each data point represents the maximum 

normalized EMG value of a knee postural muscle of a certain subject at a specific slope, 

posture and trial. Since only maximum measurements in both datasets were collected as risk 

indicators, the two datasets could be easily synchronized.
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5.2. Imperfect (or incomplete) datasets construction (datasets with missing values)

To evaluate the performance of the proposed method in dealing with missing data, this study 

was designed to fuse knee rotation and EMG datasets for different proportions of missing 

values using the CPD method. A proportion of data was randomly removed from both knee 

kinematics and EMG datasets with percentages of missing data as shown in Table 3. 

Therefore, fourteen incomplete datasets—seven for knee rotations and seven for EMG—

were constructed with different portions of missing values.

5.3. Tensor construction

The incomplete rotation and EMG datasets were then used for tensor construction. As the 

knee rotation and EMG data were collected from the same subjects at the same work settings 

(i.e., roof slope, working posture, and trial), they could be combined by the early integration 

method [46]. In this method, the columns of these two types of risk indicators were 

concatenated to form a single set of length ten vectors which was referred as ‘risk indicators’ 

in this study. For tensor construction, the following forty-nine incomplete datasets as shown 

in Table 4 were considered.

An N dimensional tensor TN ∈ℝI1×I2×……. ×IN has size (TN) = I1 × I2 × ……… × IN, where, 

Ii is the size of its ith dimension [31]. As the risk indicators were measured from multiple 

subjects at different working postures, roof slopes and multiple trials, the collected data 

could be represented as a five-dimensional sparse tensor T ∈ ℝI1×I2×I3×I4×I5, where I1 = No. 

of subjects (total 9), I2 = No. of risk indicators [EMG and kinematics; total 10 (5 knee 

rotation angles and 5 knee muscle EMG)], I3 = No. of trials (total 5), I4 = No. of postures 

[total 2 (static and dynamic)], I5 = No. of slopes [total 3 (0°,15°,30°)]. In short, the tensor T 
maps the knee rotations and EMG measurements of nine subjects, obtained from five trials, 

performed on three roof slopes, using two postures. Tensor T was referred to as ‘incomplete 

tensor’ in this study.

For a certain posture and slope, the sparse tensor T is denoted as Ti, j which represents the 

values of the risk indicators obtained from five trials performed by each subject at that roof 

slope and posture. In Ti, j, i ∈ {1, 2}, with 1 and 2 representing the static and dynamic 

postures respectively; j ∈ {1,2,3}, with 1, 2 and 3 representing the 0°, 15° and 30° slopes 

respectively. Then, the five-dimensional tensor T can be illustrated in Fig. 5.

Similarly, the original datasets collected from the previous experiments were constructed to 

a five-dimensional tensor X ∈ ℝI1×I2×I3×I4×I5 as the benchmark data, which was referred to 

as the “original tensor” in this study and was used for validation of performance of the 

fusion method.

5.4. Tensor decomposition

Once a tensor T was constructed, the CPD tensor decomposition was applied to decompose 

the tensor T into five factor matrices, representing information in each dimension. The factor 

matrices were represented as matrices A, B, C, D, and E, providing latent information in 

dimensions of subjects, risk indicators, trials, postures, and slopes, respectively.
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CPD factorizes the five-dimensional sparse tensor T ∈ ℝI1×I2×I3×I4×I5 as:

T ≈ ∑
r = 1

R
ar ∘ br ∘ cr ∘ dr ∘ er ≡ 〚 A, B, C, D, E 〛 (5)

where ar ∈ ℝI1, br ∈ ℝI2, cr ∈ ℝI3, dr ∈ ℝI4, er ∈ ℝI5, for r = 1, …, R. Factor matrix A = 

[a1,a2………aR] ∈ ℝI1×R, B = [b1, b2………bR] ∈ ℝI2×R, C= [ c1,c2………cR] ∈ ℝI3×R, D 
= [ d1,d2……… dR] ∈ ℝI4×R, and E= [e1, e2…eR] ∈ ℝI5×R are collections of all R vectors of 

ar, br, cr, dr, er respectively.

Fig. 6 illustrates the process of the CPD tensor decomposition.

Eq. (5) can be represented as:

T ≈ ∑
R

Ar ∘ Br ∘ Cr ∘ Dr ∘ Er (6)

Factor matrices A, B, C, D and E are computed by solving the following optimization 

equation:

arg min T − ∑
R

Ar ∘ Br ∘ Cr ∘ Dr ∘ Er (7)

To solve Eq. (7), the alternating least squares algorithm was applied using an optimization-

based program cpd_als in Tensor Toolbox from MATLAB [47].

5.4.1. Selection of R (number of rank-1 tensors) for CPD—Before applying CPD, 

a proper R needs to be selected to guarantee a unique mapping of the original tensor to the 

decomposed tensor. To determine the smallest number of rank-1 tensors required for CPD, 

the core consistency diagnostic method (CORCONDIA) described in [48] was applied with 

the N-way toolbox of MATLAB [49]. In this method, a Tucker core is used for assessing the 

appropriateness of a CPD model. Tucker core array, when presenting the coordinates of the 

parts of the multi-dimensional array within the subspaces, is considered as the regression of 

a multi-dimensional array onto the subspaces characterized by the factor matrices [48]. In 

the CONCORDIA method, to signify an optimal representation of the multi-dimensional 

array with respect to the subspaces defined by the factors, a parameter called “core 

consistency” is measured. A core consistency value close to 100% indicates an appropriate 

CPD model that can properly represent the variability of the factors. With the increase of the 

number of components (R), the core consistency value typically increases up to a certain 

point and then decreases. To apply CPD in this study, one component model (R = 1) was 

first attempted and then different values of R were tried by gradually increasing the number 

of components until the core consistency value reached close to 100%. Those values of R 
with the highest core consistencies were considered for CPD application.
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5.5. Tensor reconstruction (fused dataset for risk assessment)

Once the tensor was decomposed into factor matrices, these factor matrices were used to 

reconstruct a new tensor from its decomposed state. This reconstructed tensor is an 

approximate mapping of the sparse tensor T, which was referred to as ‘fused tensor’ and 

represented as T ′ ∈ ℝI1×I2×I3×I4×I5, calculated by:

T ′ = ∑
r = 1

R
Ar ∘ Br ∘ Cr ∘ Dr ∘ Er (8)

In this tensor, all the missing values were imputed, and the risk indicator values were 

reconstructed. Tensorlab (a MATLAB package for tensor computation) was used for the 

imputation and reconstruction [50]. Note that the factor matrices computed by Eq. (7) 

ensured the minimal reconstruction error during the imputation and reconstruction of the 

risk indicators. The reconstructed risk indicators were then extracted to a spread sheet, 

readily for use in WMSD risk assessment.

To allow for reliable observations, the procedures in Subsections 5.2 to 5.5 (except for 

construction of the five-dimensional tensor X from the original datasets) were repeated three 

times. In each repeat, the random removal of certain portion of data as designed earlier led to 

different preservation in each dataset. Three repeats ensured a two-thirds (67%) probability 

that the averaged results were more accurate than a single experiment while maintaining 

time-efficiency in implementation.

5.6. Performance analysis of the data fusion

The performance of the data fusion method was evaluated by comparing the reconstructed 

data to the original data using two statistical measures—root mean square error (RMSE) and 

mean absolute error (MAE). RMSE and MAE were used to measure the standard error and 

average magnitude of the error of the fused tensor, respectively [51,52].

The RMSE was calculated using the following equation:

RMSE = 1
N ∑

i1 = 1

I1
∑

i2 = 1

I2
∑

i3 = 1

I3
∑

i4 = 1

I4
∑

i5 = 1

I5
Xi1, i2, i3, i4, i5 − T ′i1, i2, i3, i4, i5

2
(9)

Here, Xi1, i2, i3, i4, i5 is an element (a value of a risk indicator of a certain subject at a certain 

slope, posture and trial) in the original tensor X and T′i1, i2, i3, i4, i5 is an element in the re-

constructed tensor (fused dataset). N is the total number of cells of the tensor which was 

computed as N = I1 × I2 × I3 × I4 × I5.

The MAE was calculated using the following equation:

MAE = 1
N ∑

i1 = 1

I1
∑

i2 = 1

I2
∑

i3 = 1

I3
∑

i4 = 1

I4
∑

i5 = 1

I5
Xi1, i2, i3, i4, i5 − T ′i1, i2, i3, i4, i5 (10)
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The performance of the data fusion method was also evaluated by comparing the risk 

assessment results obtained from tensor T′ to those obtained from tensor X collected in 

previous experimental studies. In this comparison, consistency of the effects of roof slope 

and working posture on five knee rotation angles and five knee postural muscles’ EMG 

between the original and fused datasets were considered as a performance metric. In 

previous studies, the authors explored if the work-related factors (i.e., roof slope and 

working posture) are associated with knee WMSDs among construction roofers [42,43]. 

Those studies considered the original tensor (X) for risk assessments, whereas in this study, 

the fused tensor (T′) was considered for assessing the similar risk to see if the risk 

assessment results were consistent. This way, the performance of the fusion method could be 

evaluated.

The consistency (Con) was computed using the following equation:

Con =
∑i = 1

P f mi, m′i
P × 100. (11)

where, P = Total number of possible effects of roof slope, working posture and their 

interactions on five knee rotation angles and EMG of five knee postural muscles [total 30 = 

3 factors (slope, posture, slope-posture interaction) × 10 response variables (5 knee rotations 

and 5 EMG measurements)].

mt denotes the effects of the factors (slope and posture) on the response variables obtained 

from the original tensor (X).

m′i denotes the effects of the factors (slope and posture) on the response variables obtained 

from the fused tensor (T′).

f mi, mi′ =
1, if mi = mi′
0, if mi ≠ mi′

.

All the resulting measurements of the performance metrics were averaged over the three trial 

repetitions.

5.7. Results

Table 5 summarizes the results, including the RMSE, MAE, consistency (Con), number of 

rank-1 tensors R (latent factor) and core consistency values computed for the knee rotation 

and EMG datasets with different proportions of missing values.

5.7.1. RMSE curves for datasets with different proportions of missing values
—Fig. 7 displays the RMSE curves for different proportions of missing data from the knee 

rotation and EMG datasets. In Fig. 7, rot-DS and EMG-DS means the rotation dataset and 

EMD dataset respectively.
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Generally, the RMSE curve demonstrated an increasing trend with the increase of missing 

values in both rot-DS and EMG-DS. It was graphically observed that, for up to 40% missing 

data from rot-DS and up to 60% missing data from EMG-DS, the RMSE values displayed a 

small variation from 1 to 3. When the proportion of the missing data from rot-DS increased 

to 50%, the RMSE value increased drastically for different proportions of missing values in 

EMG-DS. The RMSE curves for 50%, 60% and 70% missing data from the rot-DS shifted 

slightly upward, indicating that with the increase of missing values in rot-DS, the RMSE 

values generally increased. From 50% to up to 70% missing values from rot-DS and up to 

70% missing values from EMG-DS, the RMSE values varied considerably from 3.5 to 9. 

These results suggested that with the increase in missing values in both datasets, the 

performance of the fusion method decreased. The variation in RMSE values was small for 

up to 40% missing values in rot-DS and up to 60% missing values in EMG-DS. However, 

with further increase of missing values in both datasets, RMSE values varied considerably.

5.7.2. MAE curves for datasets with different proportions of missing values
—Fig. 8 shows the MAE curves for different proportions of missing data from the knee 

rotation and EMG datasets. In Fig. 8, rot-DS and EMG-DS means the rotation dataset and 

EMD dataset respectively.

The MAE curves demonstrated similar patterns to the RMSE curves. In general, the MAE 

curves demonstrated an increasing trend with the increase of missing values in both datasets. 

It was observed that, for up to 40% missing values from rot-DS and up to 60% missing 

values from EMG-DS, the variation of the MAE values was between 0.6 and 1.5. When 

missing values in EMG-DS were further increased (up to 70%), a sharp increase in MAE 

curve was observed when 30% data were missing in rot-DS. When the proportion of missing 

values in rot-DS was further increased to 50%, MAE values also tended to increase. Similar 

to the RMSE curves, for 50%, 60% and 70% missing data in rot-DS, the MAE curves 

shifted slightly upward, indicating that with the increase of missing values in rot-DS, MAE 

values also increased. In general, from 50%−70% missing values in rotation dataset and up 

to 70% missing values in EMG dataset, the values of MAE varied considerably from 1.5–4. 

These results indicated that with the increase in missing values in both datasets, the 

performance of the fusion method tended to decease as MAE values increased. The variation 

in MAE values was small for up to 40% missing values in rot-DS and up to 60% missing 

values in EMG-DS. However, with further increase of missing values in both datasets, the 

MAE values varied considerably.

5.7.3. Consistency curves for datasets with different proportions of missing 
values—Fig. 9 shows the consistency curves for different proportions of missing data from 

the knee rotation and EMG datasets. In Fig. 9, rot-DS and EMG-DS means the rotation 

dataset and EMD dataset respectively.

The consistency curves generally demonstrated a decreasing trend with the increase of 

missing values in both datasets. It was observed that for up to 70% missing values from rot-

DS and up to 60% missing values from EMG-DS, the consistency values varied to a small 

extent from 87% to 70%. However, for 70% missing values in EMG-DS, the consistency 

value decreased considerably for several configurations, particularly for 30%, 50% and 70% 
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missing values in rot-DS. These results indicated that with the increase in missing values in 

both datasets, the performance of the fusion method decreased in general.

6. Discussion and study limitations

To ensure reliable risk assessment of WMSD, proper data collection is crucial. However, 

human-based data can potentially have missing data points due to dropout from the data 

collection technology. Moreover, risks sometimes cannot be fully quantified with a single 

risk indicator and thus multiple heterogeneous risk indicators are often collected for risk 

assessment. As a result, a viable method is needed that reserves the interrelation among 

multiple risk indicators and potential risk factors during rectification of these multiple 

imperfect and incomplete datasets.

This research proposed the use of a CPD tensor decomposition-based data fusion method, 

which fuses multiple imperfect datasets in order to replace missing data. The proposed 

method generates a fused dataset by learning the latent structures and collaborative 

relationships among the potential risk factors and the risk indicators captured in multiple 

work settings. By learning their correlations, this proposed method replaces the missing 

values in the multiple incomplete datasets with minimum artifacts. The sample analysis 

results demonstrated that for up to a significant portion of missing values from both datasets, 

the proposed method can generate a fused dataset, by which reliable risk assessment results 

can be obtained consistent to those obtained from the original datasets to a great extent (87% 

to 70%). The possible reason for some inconsistencies in the risk assessment results may be 

attributed to the presence of significant amount of missing values in the individual datasets. 

In spite of this, for the specific datasets used in this study, the proposed method performed 

consistently up to 40% of missing data in the original datasets and could be reasonably 

applied to those datasets. The RMSE and MAE values demonstrated that the reconstruction 

errors in fusion were very small up to this range of missing data. This suggests that the 

reconstructed fused values of the risk indicators in the new dataset are close to those in the 

original, unaltered experimental datasets and hence, a good fusion performance. Although 

there is no standard threshold for good or bad RMSE and MAE values, low values of RMSE 

and MAE (within 10% of the range of the reference values) are preferable. RMSE should be 

less than 10% of the range of target property value [53]. In the current study, for different 

portions of missing values, the obtained RMSE values ranged from 0.74% to 5% relative to 

the difference between the minimum and maximum values of the risk indicators in the 

original dataset. Additionally, for up to 40% missing values from the knee rotation dataset 

and 60% missing values from the EMG dataset, the RMSE values were within 15% of the 

average value of the risk indicators in the original dataset. Similarly, the MAE values were 

within 10% of the average value of the risk indicators in the original dataset. However, for 

the specific datasets used in this study, the RMSE and MAE values varied considerably as 

the proportion of missing data increased to 50% and 70% in the rotation and EMG datasets 

respectively. The possible reason might be the presence of significant amount of missing 

values in the individual datasets that drastically deteriorated the performance of the fusion 

method in reconstruction of the data and therefore negatively affected the RMSE and MAE 

values.
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Apart from the previous three performance metrics, the performance of the present method 

can be further validated by the ‘core consistency’ values obtained when measuring number 

of rank-1 tensors R (latent factor) for CPD. For different R values presented in Table 5, the 

‘core consistency’ values ranged from 88%-98%, indicating that the CPD tensor 

decomposition is able to represent the variability of the multi-dimensional EMG and rotation 

data in the subspace substantially, thus providing a good fusion result. Overall, the findings 

suggest that the proposed method can handle up to 40% missing data and can reasonably be 

applied in WMSD risk assessment studies. The performance of this method was evaluated 

based on: a) how close a reconstructed fused dataset was to the original dataset, and b) how 

consistent the risk assessment results from a fused dataset were to those from the original 

dataset.

Although the proposed method has been proven successful in generating a fused dataset for 

used in risk assessment studies, there are still some limitations that are worth further 

investigation. First, in this study, only the maximum knee rotation angles and maximum 

normalized muscle activity measurements were considered for fusion. It would be 

interesting to explore a detailed time series dataset instead of an aggregated metric such as 

maximum. Although data fusion is known to provide deeper and more accurate insights than 

those obtained from individual single data source [54], another limitation of this work is the 

performance of the data fusion was only assessed by comparing the risk assessment results 

obtained from the fused datasets to the original dataset. The fused datasets were proven to be 

statistically similar to the original dataset, indicating that the fusion method was successful 

in reconstruction of a dataset when a significant amount of data are missing. Yet, how a 

fused dataset outperforms the individual incomplete datasets by which the fused dataset is 

constructed in terms of performance of risk assessment has not been measured.

7. Conclusion and future extension

The current research proposed a method that applies the CPD tensor decomposition 

technique to fuse multiple imperfect and incomplete datasets, as well as replacing missing 

data for assessing WMSD risks among construction workers. The proposed method helps 

not only in replacing missing values, but also holds the correlation among the potential risk 

factors and the risk indicators during replacement. The method was validated by comparing 

the risk assessment results obtained from the fused datasets to those from the original 

experimental dataset. RMSE and MAE values were also computed to compare the 

performance of the fusion method with the increase of missing values. The validation results 

suggest that the reconstructed fused datasets were statistically similar to the original 

experimental datasets and therefore able to provide consistent risk assessment results up to a 

significant amount of missing values. This method can be used as an alternative risk 

assessment method when data collected from experimental studies or real construction sites 

are incomplete due to missing data points. The findings will help enable accurate assessment 

of work-related risk factors for WMSDs among construction workers. Although the 

proposed method only used two sparse datasets for fusion, it can be extended to fuse more 

datasets. In future, this method will be explored in fusing imperfect and incomplete multiple 

time series datasets. The performance of the fusion will also be further tested by comparing 
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consistencies of the risk assessment results to those obtained from datasets with missing 

values.

Acknowledgments

The authors acknowledge the support of the National Institute for Occupational Safety and Health (NIOSH), who 
funded this research. The findings and conclusions in this research are those of the authors and do not necessarily 
represent the opinion of the National Institute for Occupational Safety and Health, Centers for Disease Control and 
Prevention.

References

[1]. BLS, Nonfatal occupational injuries and illnesses: cases with days away from work, <https://
www.bls.gov/news.release/pdf/osh2.pdf> (4 March, 2019), 2019.

[2]. David G, Ergonomic methods for assessing exposure to risk factors for work-related 
musculoskeletal disorders, Occup. Med 55 (3) (2005) 190–199, 10.1093/occmed/kqi082.

[3]. Data MC, Secondary Analysis of Electronic Health Records, Springer International Publishing, 
2016.

[4]. Young W, Weckman G, Holland W, A survey of methodologies for the treatment of missing values 
within datasets: limitations and benefits, Theor. Issues Ergon. Sci 12 (1) (2011) 15–43, 
10.1080/14639220903470205.

[5]. Rabanser S, Shchur O, Günnemann S, Introduction to tensor decompositions and their applications 
in machine learning, arXiv Preprint, 2017 https://arxiv.org/abs/1711.10781v1.

[6]. Lin JY, Lu Y, Tu X, How to avoid missing data and the problems they pose: design considerations, 
Shanghai Arch. Psychiatry 24 (3) (2012) 181–184, 10.3969/j.issn.1002-0829.2012.03.010. 
[PubMed: 25324625] 

[7]. Kang H, The prevention and handling of the missing data, Korean J. Anesthesiol 64 (5) (2013) 
402–406, 10.4097/kjae.2013.64.5.402. [PubMed: 23741561] 

[8]. Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J, Robinson ES, Munafò MR, Power failure: 
why small sample size undermines the reliability of neuroscience, Nat. Rev. Neurosci 14 (5) 
(2013) 365–376, 10.1038/nrn3475. [PubMed: 23571845] 

[9]. Malhotra NK, Analyzing marketing research data with incomplete information on the dependent 
variable, J. Mark. Res 24 (1) (1987) 74–84, 10.2307/3151755.

[10]. Hamer RM, Simpson PM, Last observation carried forward versus mixed models in the analysis 
of psychiatric clinical trials, Am. J. Psychiatr 166 (6) (2009) 639–641, 10.1176/
appi.ajp.2009.09040458. [PubMed: 19487398] 

[11]. Gelman A, Raghunathan TE, Using conditional distributions for missing-data imputation, Stat. 
Sci 15 (2001) 268–269 http://www.stat.columbia.edu/~gelman/research/published/arnold2.pdf.

[12]. Lahat D, Adali T, Jutten C, Multimodal data fusion: an overview of methods, challenges, and 
prospects, Proc. IEEE 103 (9) (2015) 1449–1477, 10.1109/JPROC.2015.2460697.

[13]. Amiri M, Jensen R, Missing data imputation using fuzzy-rough methods, Neurocomputing 205 
(2016) 152–164, 10.1016/j.neucom.2016.04.015.

[14]. Luengo J, Sáez JA, Herrera F, Missing data imputation for fuzzy rule-based classification 
systems, Soft. Comput 16 (5) (2012) 863–881, 10.1007/s00500-011-0774-4.

[15]. Winkler R, Klawonn F, Kruse R, Fuzzy c-means in high dimensional spaces, Int. J. Fuzzy Syst. 
Appl 1 (1) (2011) 1–16, 10.4018/IJFSA.2011010101.

[16]. Castanedo F, A review of data fusion techniques, Sci. World J 2013 (2013), 
10.1155/2013/704504.

[17]. Razavi SN, Haas CT, Multisensor data fusion for on-site materials tracking in construction, 
Autom. Constr 19 (8) (2010) 1037–1046, 10.1016/j.autcon.2010.07.017.

[18]. Razavi SN, Haas CT, Reliability-based hybrid data fusion method for adaptive location 
estimation in construction, J. Comput. Civ. Eng 26 (1) (2011) 1–10, 10.1061/
(ASCE)CP.1943-5487.0000101.

Dutta et al. Page 17

Autom Constr. Author manuscript; available in PMC 2021 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.bls.gov/news.release/pdf/osh2.pdf
https://www.bls.gov/news.release/pdf/osh2.pdf
https://arxiv.org/abs/1711.10781v1
http://www.stat.columbia.edu/~gelman/research/published/arnold2.pdf


[19]. Shahi A, Cardona JM, Haas CT, West JS, Caldwell GL, Activity-based data fusion for automated 
progress tracking of construction projects, Construction Research Congress 2012: Construction 
Challenges in a Flat World, 2012, pp. 838–847, , 10.1061/9780784412329.085.

[20]. Soman R, Kyriakides M, Onoufriou T, Ostachowicz W, Numerical evaluation of multi-metric 
data fusion based structural health monitoring of long span bridge structures, Struct. Infrastruct. 
Eng 14 (6) (2018) 673–684, 10.1080/15732479.2017.1350984.

[21]. Anaissi A, Makki Alamdari M, Rakotoarivelo T, Khoa N, A tensor-based structural damage 
identification and severity assessment, Sensors 18 (1) (2018) 111, 10.3390/s18010111.

[22]. Chen J, Qiu J, Ahn C, Construction worker’s awkward posture recognition through supervised 
motion tensor decomposition, Autom. Constr 77 (2017) 67–81, 10.1016/j.autcon.2017.01.020.

[23]. Cheng T, Migliaccio GC, Teizer J, Gatti UC, Data fusion of real-time location sensing and 
physiological status monitoring for ergonomics analysis of construction workers, J. Comput. Civ. 
Eng 27 (3) (2012) 320–335, 10.1061/(ASCE)CP.1943-5487.0000222.

[24]. Cheng T, Teizer J, Migliaccio GC, Gatti UC, Automated task-level activity analysis through 
fusion of real time location sensors and worker’s thoracic posture data, Autom. Constr 29 (2013) 
24–39, 10.1016/j.autcon.2012.08.003.

[25]. Chen H, Luo X, Zheng Z, Ke J, A proactive workers’ safety risk evaluation framework based on 
position and posture data fusion, Autom. Constr 98 (2019) 275–288, 10.1016/
j.autcon.2018.11.026.

[26]. Zheng Y, Methodologies for cross-domain data fusion: an overview, IEEE Trans. Big Data 1 (1) 
(2015) 16–34, 10.1109/TBDATA.2015.2465959.

[27]. Zheng Y, Liu Y, Yuan J, Xie X, Urban computing with taxicabs, Proceedings of the 13th 
International Conference on Ubiquitous Computing, 2011, pp. 89–98, , 
10.1145/2030112.2030126.

[28]. Wen W, Wu C, Wang Y, Chen Y, Li H, Learning structured sparsity in deep neural networks, 
Advances in Neural Information Processing Systems, 2016, pp. 2074–2082 https://papers.nips.cc/
paper/6504-learning-structured-sparsity-indeep-neural-networks.pdf.

[29]. Sorber L, Van Barel M, De Lathauwer L, Structured data fusion, IEEE J. Sel. Top. Signal Process 
9 (4) (2015) 586–600, 10.1109/JSTSP.2015.2400415.

[30]. Papalexakis EE, Faloutsos C, Sidiropoulos ND, Tensors for data mining and data fusion: models, 
applications, and scalable algorithms, ACM Trans. Intel. Syst. Technol 8 (2) (2017) 16, 
10.1145/2915921.

[31]. Dauwels J, Garg L, Earnest A, Pang LK, Tensor factorization for missing data imputation in 
medical questionnaires, 2012 IEEE International Conference on Acoustics, Speech and Signal 
Processing (ICASSP), 2012, pp. 2109–2112, , 10.1109/ICASSP.2012.6288327.

[32]. Xie K, Li X, Wang X, Xie G, Wen J, Cao J, Zhang D, Fast tensor factorization for accurate 
internet anomaly detection, IEEE/ACM Trans. Network. (TON) 25 (6) (2017) 3794–3807, 
10.1109/TNET.2017.2761704.

[33]. Charlier J, State R, Hilger J, Non-negative paratuck2 tensor decomposition combined to lstm 
network for smart contracts profiling, 2018 IEEE International Conference on Big Data and 
Smart Computing (BigComp), 2018, pp. 74–81, ,10.1109/BigComp.2018.00020.

[34]. Xiong L, Chen X, Huang T-K, Schneider J, Carbonell JG, Temporal collaborative filtering with 
bayesian probabilistic tensor factorization, Proceedings of the 2010 SIAM International 
Conference on Data Mining, 2010, pp. 211–222, , 10.1137/1.9781611972801.19.

[35]. Dunlavy DM, Kolda TG, Acar E, et al., ACM Trans. Knowl. Discov. Data (TKDD) 5 (2) (2011) 
10, 10.1145/1921632.1921636.

[36]. Žitnik M, Zupan B, Data fusion by matrix factorization, IEEE Trans. Pattern Anal. Mach. Intell 
37 (1) (2014) 41–53, 10.1109/TPAMI.2014.2343973.

[37]. Kolda TG, Bader BW, Tensor decompositions and applications, SIAM Rev. 51 (3) (2009) 455–
500, 10.1137/07070111X.

[38]. Vervliet N, Debals O, Sorber L, De Lathauwer L, Breaking the curse of dimensionality using 
decompositions of incomplete tensors: tensor-based scientific computing in big data analysis, 
IEEE Signal Process. Mag 31 (5) (2014) 71–79, 10.1109/MSP.2014.2329429.

Dutta et al. Page 18

Autom Constr. Author manuscript; available in PMC 2021 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://papers.nips.cc/paper/6504-learning-structured-sparsity-indeep-neural-networks.pdf
https://papers.nips.cc/paper/6504-learning-structured-sparsity-indeep-neural-networks.pdf


[39]. Acar E, Dunlavy DM, Kolda TG, Mørup M, Scalable tensor factorizations for incomplete data, 
Chemom. Intell. Lab. Syst 106 (1) (2011) 41–56, 10.1016/j.chemolab.2010.08.004.

[40]. Asif MT, Mitrovic N, Dauwels J, Jaillet P, Matrix and tensor based methods for missing data 
estimation in large traffic networks, IEEE Trans. Intell. Transp. Syst 17 (7) (2016) 1816–1825, 
10.1109/TITS.2015.2507259.

[41]. Kolda TG, Sun J, Scalable tensor decompositions for multi-aspect data mining, 2008 Eighth 
IEEE International Conference on Data Mining, IEEE, 2008, pp. 363–372, , 10.1109/
ICDM.2008.89.

[42]. Breloff SP, Dutta A, Dai F, Sinsel EW, Warren CM, Ning X, Wu JZ, Assessing work-related risk 
factors for musculoskeletal knee disorders in construction roofing tasks, Appl. Ergon 81 (2019) 
102901, 10.1016/j.apergo.2019.102901. [PubMed: 31422268] 

[43]. Dutta A, Breloff SP, Dai F, Sinsel EW, Warren CM, Carey RE, Wu JZ, Effects of Working 
Posture and Roof Slope on Activation of Lower Limb Muscles during Shingle Installation, 
Ergonomics, 1-12 (2020), pp. 1–7, https://doi.org/10.1080/00140139.2020.1772378https://
www.tandfonline.com/doi/abs/10.1080/00140139.2020.1772378?journalCode=terg20https://
www.tandfonline.com/doi/abs/10.1080/00140139.2020.1772378?journalCode=terg20 .

[44]. Kingston DC, Tennant LM, Chong HC, Acker SM, Peak activation of lower limb musculature 
during high flexion kneeling and transitional movements, Ergonomics 59 (9) (2016) 1215–1223, 
10.1080/00140139.2015.1130861. [PubMed: 26923936] 

[45]. Hofer JK, Gejo R, McGarry MH, Lee TQ, Effects on tibiofemoral biomechanics from kneeling, 
Clin. Biomech 26 (6) (2011) 605–611, 10.1016/j.clinbiomech.2011.01.016.

[46]. Pavlidis P, Weston J, Cai J, Noble WS, Learning gene functional classifications from multiple 
data types, J. Comput. Biol 9 (2) (2002) 401–411, 10.1089/10665270252935539. [PubMed: 
12015889] 

[47]. Bader B, Kolda T, MATLAB tensor toolbox version 2.4,<https://www.sandia.gov/~tgkolda/
TensorToolbox/index-2.6.html>(May 14, 2019).

[48]. Bro R, Kiers HA, A new efficient method for determining the number of components in 
PARAFAC models, J. Chemom 17 (5) (2003) 274–286, 10.1002/cem.801.

[49]. Andersson CA, Bro R, The N-way toolbox for MATLAB, Chemom. Intell. Lab. Syst 52 (1) 
(2000) 1–4, 10.1016/S0169-7439(00)00071-X.

[50]. Debals O, Van Eeghem F, Vervliet N, De Lathauwer L, Tensor computations using Tensorlab, 
https://www.tensorlab.net/demos/tutorial.pdf>, (May 19, 2019).

[51]. Alimuddin I, Sumantyo JTS, Kuze H, Assessment of pan-sharpening methods applied to image 
fusion of remotely sensed multi-band data, Int. J. Appl. Earth Obs. Geoinf 18 (2012) 165–175, 
10.1016/j.jag.2012.01.013.

[52]. Ng KB, Kantor PB, Predicting the effectiveness of naive data fusion on the basis of system 
characteristics, J. Am. Soc. Inf. Sci 51 (13) (2000) 1177–1189, 
10.1002/1097-4571(2000)9999:9999<::AID-ASI1030>3.0.CO;2-E.

[53]. Alexander DL, Tropsha A, Winkler DA, Beware of R 2: simple, unambiguous assessment of the 
prediction accuracy of QSAR and QSPR models, J. Chem. Inf. Model 55 (7) (2015) 1316–1322, 
10.1021/acs.jcim.5b00206. [PubMed: 26099013] 

[54]. Khaleghi B, Khamis A, Karray FO, Razavi SN, Multisensor data fusion: a review of the state-of-
the-art, Inform. Fusion 14 (1) (2013) 28–44, 10.1016/j.inffus.2011.08.001.

Dutta et al. Page 19

Autom Constr. Author manuscript; available in PMC 2021 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html
https://www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html
https://www.tensorlab.net/demos/tutorial.pdf


Fig. 1. 
CPD tensor decomposition.
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Fig. 2. 
Overview of proposed method.

Dutta et al. Page 21

Autom Constr. Author manuscript; available in PMC 2021 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Schematic representation of DS3 as a 3D tensor M.
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Fig. 4. 
Schematic illustration of CPD decomposition of the 3D tensor M.
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Fig. 5. 
Representation of the five-dimensional tensor T.
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Fig. 6. 
CPD tensor decomposition of tensor T.
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Fig. 7. 
RMSE curves for 10%, 20%, 30%, 40%, 50%, 60% and 70% missing data from rotation 

dataset.
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Fig. 8. 
MAE curves for 10%, 20%, 30%, 40%, 50%, 60% and 70% missing data from rotation 

dataset.
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Fig. 9. 
Consistency curves for 10%, 20%, 30%, 40%, 50%, 60% and 70% missing data from 

rotation DS.
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Table 1

Formats of DS1 and DS2.

Dataset (DS) Tabular format

DS1 subject, setting1, setting2, …, settingq, ind1
1, ind1

2, …, ind1
m

DS2 subject, setting1, setting2, …, settingq, ind2
1, ind2

2, …, ind1
n
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Table 2

Format of DS3.

Dataset (DS) Format

DS3 subject, setting1, setting2, …, settingq, ind1
1, …, ind1

m, ind2
1, …, ind2

n
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Table 3

Proportion of missing data.

Datasets Missing proportion (%)

Knee kinematics data 10 20 30 40 50 60 70

Knee EMG data 10 20 30 40 50 60 70
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Table 4

Incomplete datasets for tensor construction.

Missing proportion from kinematics data (%) Missing proportion from EMG data (%)

10 10 20 30 40 50 60 70

20 10 20 30 40 50 60 70

30 10 20 30 40 50 60 70

40 10 20 30 40 50 60 70

50 10 20 30 40 50 60 70

60 10 20 30 40 50 60 70

70 10 20 30 40 50 60 70
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Table 5

Summary of results.

Missing proportion (%) RMSE MAE Con (%) R Core consistency (%)

Knee rotation EMG

10 10 1.39 0.69 80 17 98

10 20 1.38 0.8192 80 14 96.5

10 30 1.39 0.818 80 15 97

10 40 1.4 0.8412 80 14 96

10 50 1.44 0.805 77 14 96.5

10 60 1.57 0.9597 77 12 95

10 70 2.34 1.47 74 10 94.67

20 10 1.67 0.9791 80 12 97

20 20 1.73 1.04 80 11 97

20 30 1.78 1.04 80 11 95.6

20 40 1.75 1.06 77 12 94.8

20 50 1.79 1.08 74 13 94

20 60 1.83 1.09 74 13 93

20 70 2.45 1.25 70 10 92.7

30 10 1.82 1 77 13 97

30 20 2 1.14 74 11 95.6

30 30 2.14 1.17 74 11 96

30 40 2.19 1.25 74 10 95

30 50 2.26 1.29 74 10 95.7

30 60 2.32 1.24 74 10 93.5

30 70 5.6 3.4 57 11 94

40 10 2.11 1.11 87 12 96.5

40 20 2.95 1.32 74 10 94

40 30 2.98 1.31 74 10 95

40 40 2.52 1.24 74 12 93.7

40 50 2.83 1.3 74 12 92.76

40 60 2.7 1.39 74 11 93

40 70 2.77 1.51 70 13 92

50 10 4.9 1.69 80 22 93

50 20 5.11 1.81 80 31 93

50 30 5.28 1.99 80 29 92.6

50 40 6.19 2.24 77 34 92

50 50 6 2.4 77 43 91.5

50 60 6.5 2.7 77 40 92

50 70 6.8 3.8 60 10 91

60 10 3.38 1.45 84 12 93

60 20 4.4 1.76 77 15 93.6

60 30 4.63 1.8 77 13 92

Autom Constr. Author manuscript; available in PMC 2021 April 23.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dutta et al. Page 34

Missing proportion (%) RMSE MAE Con (%) R Core consistency (%)

Knee rotation EMG

60 40 5 2 77 13 92.8

60 50 5.32 2.08 74 10 93

60 60 5.39 2.16 70 16 92

60 70 5.6 2.2 70 11 91

70 10 6.7 2.7 77 20 90

70 20 7.7 3.2 74 17 89

70 30 7.5 3 74 12 91.5

70 40 7.54 3.38 70 10 90

70 50 8 3.3 70 11 92.4

70 60 8.29 3.4 70 11 90

70 70 8.8 3.67 67 12 88
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